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We Need
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Abstraction



e Landscape

Tool Example Experience

Plugin-Ins Blender Script, AE Script

UI Automation
(Macros)

Apple Script

Shell Scripts FFmpeg, AVISynth



e Landscape

Tool Example Experience

Plugin-Ins Blender Script, AE Script

UI Automation
(Macros)

Apple Script

Shell Scripts FFmpeg, AVISynth



e Landscape

Tool Example Experience

Plugin-Ins Blender Script, AE Script

UI Automation
(Macros)

Apple Script

Shell Scripts FFmpeg, AVISynth



e Landscape

Tool Example Experience

Plugin-Ins Blender Script, AE Script

UI Automation
(Macros)

Apple Script

Shell Scripts FFmpeg, AVISynth



Video Editor



Functional Programming Language*

*But bad with abstractions.



Video,
the programming language





Primitives



List Comprehensions



Modules





Functions









Writing Video
+ Editing Talks

(RacketCon 2016)
< Editing Talks

Manually
(RacketCon 2015)
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Video,
the tower of languages



FFmpegMLT

Video



FFmpegMLT

Video
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We have a problem…

We want to solve it in the
problem domain's own language…

DSLs are the

"Ultimate Abstraction"

Paul Hudak
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Tower
of DSLs

Language Oriented

Programming



We want to make DSLs quickly…

Use Racket, a programmable
programming language

MLT FFmpeg
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Linguistic Inheritance
Movie Script

Video Implementation
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Remove construct

New construct

Change construct



Change construct



Interposition Points

#lang video

logo
talk

;; Where
(define logo
  ...)
(define talk
  ...)

(module anon video
  (#%module-begin

logo
talk
(define logo
  ...)
(define talk
  ...)))

parses



Interposition Points

(module anon video
  (#%module-begin

logo
talk
(define logo
  ...)
(define talk
  ...)))

(module anon racket
  (#%module-begin

(require vidlib)
(define logo
  ...)
(define talk

...)
(vid-begin vid
logo
talk)))

elaborates



Implementing Interposition Points
#lang racket



FFI



An FFI DSL

mlt_repository
mlt_factory_init(const char *directory);

(Scheme Wrksp., 2004)



An FFI DSL

mlt_repository
mlt_factory_init(const char *directory);

(define-mlt mlt-factory-init
  (_fun [p : _path]

-> [ret : _mlt-repository/null]
-> (maybe-error? ret)))

(Scheme Wrksp., 2004)



An Object DSL

(define-mlt mlt-factory-init ...)
(define-mlt mlt-factory-close ...)

(define-constructor clip video
  ... mlt-factory-init ...

mlt-factory-close ...)



MLT FFmpeg



Documentation



A Documentation DSL

(ICFP, 2009)



A Documentation DSL

#lang video/documentation
@title{Video: The Language}
@(defmodulelang video)

Video Language (or VidLang, sometimes referred
to as just Video) is a DSL for editing...videos.
It aims to merge the capabilities of a traditional

(ICFP, 2009)
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Types



(clip "clip.mp4"
#:start 0
#:end 50)
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(POPL, 2016)



A Type Implementation DSL

(define-typed-syntax (clip f) ≫
  [⊢ f ≫ _ ⇐ File] #:where n (length f)
  -------------------------------------
  [⊢ (untyped:clip f) ⇒ (Producer n)])

(POPL, 2016)
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We have a problem…

We want to solve it in the
problem domain's own language…

syntax-parse
A DSL for making DSLs

DSL
 V 

(ICFP, 2010)
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We have a problem…

We want to solve it in the
problem domain's own language…

? 
We make DSLs using

Linguistic Inheritance ?

Editor
 V 







Future Work
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anks For Watching

http://lang.video
@videolang We make DSLs using

Linguistic Inheritance

MLT FFmpeg


