
Super 8 Languages for Making Movies
(A Functional Pearl)

Leif Andersen
Stephen Chang

Mahias Felleisen

PLT @ Northeastern University

ICFP - Sept 4, 2017

Super 8: Languages for Making Movies

Super, 8 Languages for Making Movies

Super 8: Languages for Making Movies

A DSL for Scripting Videos

Super, 8 Languages for Making Movies

DSL Towers to Solve Multitudes of Problems

Super 8: Languages for Making Movies

A DSL for Scripting Videos

Super, 8 Languages for Making Movies

DSL Towers to Solve Multitudes of Problems

One down

One down
19 more to go…

We Need
Automation

We Need
Automation
Abstraction

e Landscape

Tool Example Experience

Plugin-Ins Blender Script, AE Script

UI Automation
(Macros)

Apple Script

Shell Scripts FFmpeg, AVISynth

e Landscape

Tool Example Experience

Plugin-Ins Blender Script, AE Script

UI Automation
(Macros)

Apple Script

Shell Scripts FFmpeg, AVISynth

e Landscape

Tool Example Experience

Plugin-Ins Blender Script, AE Script

UI Automation
(Macros)

Apple Script

Shell Scripts FFmpeg, AVISynth

e Landscape

Tool Example Experience

Plugin-Ins Blender Script, AE Script

UI Automation
(Macros)

Apple Script

Shell Scripts FFmpeg, AVISynth

Video Editor

Functional Programming Language*

*But bad with abstractions.

Video,
the programming language

Primitives

List Comprehensions

Modules

Functions

Writing Video
+ Editing Talks

(RacketCon 2016)
< Editing Talks

Manually
(RacketCon 2015)

Super 8: Languages for Making Movies

A DSL for Scripting Videos

Super, 8 Languages for Making Movies

DSL Towers to Solve Multitudes of Problems

Super 8: Languages for Making Movies

A DSL for Scripting Videos

Super, 8 Languages for Making Movies

DSL Towers to Solve Multitudes of Problems

Video,
the tower of languages

FFmpegMLT

Video

FFmpegMLT

Video

We have a problem…

We have a problem…

We want to solve it in the
problem domain's own language…

We have a problem…

We want to solve it in the
problem domain's own language…

DSLs are the

"Ultimate Abstraction"

Paul Hudak

We have a problem… V

We have a problem…

We want to solve it in the
problem domain's own language…

 V

We have a problem…

We want to solve it in the
problem domain's own language…

Tower
of DSLs

 V

Tower
of DSLs

Language Oriented

Programming

We want to make DSLs quickly…

Use Racket, a programmable
programming language

MLT FFmpeg

We make DSLs using

Linguistic Inheritance

We make DSLs using

Linguistic Inheritance
Movie Script

Video Implementation

Racket

We make DSLs using

Linguistic Inheritance
Movie Script

Video Implementation

Racket

Re-export construct

We make DSLs using

Linguistic Inheritance
Movie Script

Video Implementation

Racket

Re-export construct

Remove construct

We make DSLs using

Linguistic Inheritance
Movie Script

Video Implementation

Racket

Re-export construct

Remove construct

New construct

We make DSLs using

Linguistic Inheritance
Movie Script

Video Implementation

Racket

Re-export construct

Remove construct

New construct

Change construct

Change construct

Interposition Points

#lang video

logo
talk

;; Where
(define logo
 ...)
(define talk
 ...)

(module anon video
 (#%module-begin

logo
talk
(define logo
 ...)
(define talk
 ...)))

parses

Interposition Points

(module anon video
 (#%module-begin

logo
talk
(define logo
 ...)
(define talk
 ...)))

(module anon racket
 (#%module-begin

(require vidlib)
(define logo
 ...)
(define talk

...)
(vid-begin vid
logo
talk)))

elaborates

Implementing Interposition Points
#lang racket

FFI

An FFI DSL

mlt_repository
mlt_factory_init(const char *directory);

(Scheme Wrksp., 2004)

An FFI DSL

mlt_repository
mlt_factory_init(const char *directory);

(define-mlt mlt-factory-init
 (_fun [p : _path]

-> [ret : _mlt-repository/null]
-> (maybe-error? ret)))

(Scheme Wrksp., 2004)

An Object DSL

(define-mlt mlt-factory-init ...)
(define-mlt mlt-factory-close ...)

(define-constructor clip video
 ... mlt-factory-init ...

mlt-factory-close ...)

MLT FFmpeg

Documentation

A Documentation DSL

(ICFP, 2009)

A Documentation DSL

#lang video/documentation
@title{Video: The Language}
@(defmodulelang video)

Video Language (or VidLang, sometimes referred
to as just Video) is a DSL for editing...videos.
It aims to merge the capabilities of a traditional

(ICFP, 2009)

MLT FFmpeg

Types

(clip "clip.mp4"
#:start 0
#:end 50)

(cut-producer

#:start 0
#:end 100)

(clip "clip.mp4"
#:start 0
#:end 50)

(cut-producer

#:start 0
#:end 100)

(clip "clip.mp4"
#:start 0
#:end 50)

A Typed DSL

A Typed DSL

(POPL, 2016)

A Type Implementation DSL

(define-typed-syntax (clip f) ≫
 [⊢ f ≫ _ ⇐ File] #:where n (length f)

 [⊢ (untyped:clip f) ⇒ (Producer n)])

(POPL, 2016)

MLT FFmpeg

We have a problem…
DSL
 V

We have a problem…

We want to solve it in the
problem domain's own language…

DSL
 V

We have a problem…

We want to solve it in the
problem domain's own language…

syntax-parse
A DSL for making DSLs

DSL
 V

(ICFP, 2010)

MLT FFmpeg

We have a problem…
Editor
 V

We have a problem…

We want to solve it in the
problem domain's own language…

Editor
 V

We have a problem…

We want to solve it in the
problem domain's own language…

?
We make DSLs using

Linguistic Inheritance ?

Editor
 V

Future Work

MLT FFmpeg

anks For Watching

http://lang.video
@videolang We make DSLs using

Linguistic Inheritance

MLT FFmpeg

